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Transition systems

A transition system (or state machine) is a pair (S ,→) where S
is a set and →⊆ S × S is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:

L-labelled transitions: →⊆ S × L× S

A start/initial state s0 ∈ S

A set of final states F ⊆ S (where runs terminate)

If → is a partial function (from S × L to S), the transition system
is deterministic. If → is a function, the transition system is total.
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Reachability and Runs

A state s ′ is reachable from a state s if (s, s ′) ∈ →∗ (the reflexive
and transitive closure of →).

A run from a state s is a sequence s1, s2, . . . such that s1 = s and
si → si+1 for all i .

NB

In a non-deterministic transition system there may be many (or no)
runs from a state. In an unlabelled deterministic transition system
there is exactly one maximal run from every state.
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Acceptors and Transducers

An acceptor is a transition system with:

(input-)labelled transitions

a start/initial state

a set of final states

A transducer is a transition system with:

(input & output-)labelled transitions

a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map
sequences of inputs to sequences of outputs.
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Deterministic Finite Automata
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A deterministic finite automaton (DFA) is a total, finite state
acceptor.

DFAs represent “computation with finite memory”

DFAs are simple, easy to work with and show up all over the place.
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states

: Q = {q0, q1, q2}

Σ is the input alphabet

: Σ = {0, 1}

δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states

: F = {q1}
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Deterministic Finite Automata
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δ(q0, 0) = q0
δ(q0, 1) = q1
δ(q1, 0) = q2
δ(q1, 1) = q1
δ(q2, 0) = q1
δ(q2, 1) = q1
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δ 0 1

q0 q0 q1
q1 q2 q1
q2 q1 q1
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}

14



Language of a DFA
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A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.
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A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ

Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
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For a DFA A = (Q,Σ, δ, q0,F ), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)
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Language of a DFA: formally

Given a DFA A = (Q,Σ, δ, q0,F ) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

We then define
L(A) = LA(q0)
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L(A1) =?
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L(A1) = {w ∈ {a, b}∗ : w ends with b}
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L(A2) = {w ∈ {a, b}∗ : w ends with a} ∪ {λ}

38



Examples

Example

Find A3 such that L(A3) = ∅

A3

q0

a, b

Find A4 such that L(A4) = {λ}

A4

q0 q1
a, b

a, b
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Find A5 such that L(A5) = {w ∈ {a, b}∗ : every odd symbol is b}

A5

q0 q1

q2

b

a, b
a
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Find A6 such that
L(A6) = {w ∈ {a, b}∗ : second-last symbol is b}
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a b
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Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

A non-deterministic finite automaton (NFA) is a non-
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states

: Q = {q0, q1, q2}

Σ is the input alphabet

: Σ = {0, 1}

δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states

: F = {q1}
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
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Non-deterministic Finite Automata
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δ =


(q0, 0, q0), (q0, 1, q0), (q0, 1, q1),
(q1, ε, q2), (q1, 0, q2), (q1, 1, q1),

(q2, 0, q1)
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Non-deterministic Finite Automata
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δ ε 0 1

q0 ∅ {q0} {q0, q1}
q1 {q2} {q2} {q1}
q2 ∅ {q1} ∅
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states: Q = {q0, q1, q2}
Σ is the input alphabet: Σ = {0, 1}
δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states: F = {q1}
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An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
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Language of an NFA

q0 q1 q2

w : 1000

1
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0

Colour the state q0

Colour states reachable by one or more ε transitions from q0.

For each symbol c of w :

Colour all states reachable by a c-transition followed by 0 or
more ε transitions from the coloured states, and uncolour all
other states.

Accept if there are no symbols left and a final state is coloured;
otherwise, reject.
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otherwise, reject.
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Language of an NFA

q0 q1 q2

1

1

1

0,ε

0

For an NFA A = (Q,Σ, δ, q0,F ), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

72



Language of an NFA

q0 q1 q2

L(A) = {1, 10, 11, 101, . . .}

1

1

1

0,ε

0

For an NFA A = (Q,Σ, δ, q0,F ), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A
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Language of an NFA: formally

Given an NFA A = (Q,Σ, δ, q0,F ) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

If q
ε−→ q′ and w ∈ LA(q′) then w ∈ LA(q)

We then define
L(A) = LA(q0)
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Language of an NFA: formally

Given an NFA A = (Q,Σ, δ, q0,F ) we define LA : Q → Σ∗

inductively as follows:

If q ∈ F then λ ∈ LA(q)

If q
a−→ q′ and w ∈ LA(q′) then aw ∈ LA(q)

If q
ε−→ q′ and w ∈ LA(q′) then w ∈ LA(q)

We then define
L(A) = LA(q0)
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Examples

Example

B1

q0 q1

a, b

b

L(B1) =?
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Examples

Example

B1

q0 q1

a, b

b

L(B1) = {w ∈ {a, b}∗ : w ends with b}
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Examples

Example

B2

q0 q1

a, b

b

L(B2) =?
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Examples

Example

B2

q0 q1

a, b

b

L(B2) = {a, b}∗
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Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0
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Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0
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Examples

Example

Find B3 such that L(B3) = ∅

B3

q0

Find B4 such that L(B4) = {λ}

B4

q0
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Examples

Example

Find B5 such that L(B5) = {w ∈ {a, b}∗ : second-last symbol is b}

B5

q0 q1 q2

a, b

b a, b
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Examples

Example

Find B5 such that L(B5) = {w ∈ {a, b}∗ : second-last symbol is b}

B5

q0 q1 q2

a, b

b a, b
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NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F ), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q′ ∈ Q : q0
ε−→
∗
q′}

F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.
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NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F ), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q′ ∈ Q : q0
ε−→
∗
q′}

F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.
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NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem

For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B = (Q,Σ, δ, q0,F ), construct A = (Q ′,Σ, δ′, q′0,F

′) as
follows:

Q ′ = Pow(Q)

δ′(X , a) = {q′ ∈ Q : ∃q ∈ X , q′′ ∈ Q.q
a−→ q′′

ε−→
∗
q′}

q′0 = {q′ ∈ Q : q0
ε−→
∗
q′}

F ′ = {X ∈ Q ′ : X ∩ F 6= ∅}
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅

∅ ∅

{q0}

{q0} {q0, q1}

{q1}

{q2} {q2}

{q2}

∅ ∅

{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅

∅ ∅

{q0}

{q0} {q0, q1}

{q1}

{q2} {q2}

{q2}

∅ ∅

{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0}

{q0} {q0, q1}

{q1}

{q2} {q2}

{q2}

∅ ∅

{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1}

{q2} {q2}

{q2}

∅ ∅

{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2}

∅ ∅

{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1}

{q0, q2} {q0, q1, q2}

{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2}

{q0} {q0, q1}

{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2}

{q2} {q2}

{q0, q1, q2}

{q0, q2} {q0, q1, q2}

95



NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2}

{q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ ∅ ∅
{q0} {q0} {q0, q1}
{q1} {q2} {q2}
{q2} ∅ ∅
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q1, q2} {q2} {q2}
{q0, q1, q2} {q0, q2} {q0, q1, q2}
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

δ′ a b
∅ A A A
{q0} B B E
{q1} C D D
{q2} D A A
{q0, q1} E F H
{q0, q2} F B E
{q1, q2} G D D
{q0, q1, q2} H F H
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NFA to DFA Example
Example

B5

q0 q1 q2

a, b

b a, b

B E

F H

G

C

D

A

a

b

b
a

b
a

a b

a, b

a, b
a, b

a, b
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NFAs vs DFAs

Theorem

For any NFA with n states there exists a DFA with at most 2n

states that accepts the same language

There exist NFAs with n states such that the smallest DFA
that accepts the same language has at least 2n states.
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Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions
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Regular languages

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

Equivalently, there is some NFA B such that L = L(B)
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Regular languages

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)

Equivalently, there is some NFA B such that L = L(B)
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Non-regular languages

Are there languages which are not regular?

Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0n1n : n ∈ N}
Intuitively: need arbitrary large memory to “remember” the
number of 0’s

108



Complementation

Theorem

If L is a regular language then Lc = Σ∗ \ L is a regular language.

Proof:

Let A = (Q,Σ, δ, q0,F ) be a DFA such that L(A) = L

Consider A′ = (Q,Σ, δ, q0,Q \ F )

For any word w ∈ Σ∗, the corresponding run in A is unique,
so:

If w ∈ L(A) then w /∈ L(A′), and
If w /∈ L(A) then w ∈ L(A′),

Therefore L(A′) = Σ∗ \ L(A) = Lc

NB

This argument does not apply for NFAs (see B1 and B2)
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Union

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2

Construct an NFA B by having a new start state with
ε-transitions to the start states of B1 and B2
Consider w ∈ L1 ∪ L2:

If w ∈ L1 then there is a run in B1, and hence in B, which
ends in a final state
If w ∈ L2 then there is a run in B2, and hence in B, which
ends in a final state
In either case w ∈ L(B)

Conversely, any accepting run in B will be either an accepting
run in B1 or in B2; so if w ∈ L(B) then w ∈ L1 ∪ L2
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Intersection

Theorem

If L1 and L2 are regular languages, then L1 ∩ L2 is regular.

Proof:

L1 ∩ L2 = (Lc1 ∪ Lc2)c
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Intersection

Theorem

If L1 and L2 are regular languages, then L1 ∩ L2 is regular.

Proof:
L1 ∩ L2 = (Lc1 ∪ Lc2)c
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Concatenation
Recall for languages X and Y : X · Y = {xy : x ∈ X , y ∈ Y }

Theorem

If L1 and L2 are regular languages, then L1 · L2 is regular.

Proof:

Let B1 and B2 be NFAs such that L(B1) = L1 and L(B2) = L2
Construct an NFA B by adding ε-transitions from the final
states of B1 to the start state of B2. Let the start state of B
be the start state of B1; and let the final states of B be the
final states of B2.
Any word in L1 · L2 can be written as wv with w ∈ L1 and
v ∈ L2. w has an accepting run in B1 and v has an accepting
run in B2, so wv has an accepting run in B.
Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B1 followed by an
accepting run in B2. Thus w can be broken up into two words
w = xy where x ∈ L1 and y ∈ L2.113



Kleene star

Recall for a language X :
X ∗ = {w : w is the concatenation of 0 or more words in X}

Theorem

If L is regular languages, then L∗ is regular.

Proof:

Let B be an NFA such that L(B) = L

Construct an NFA B′ by:

creating a new start state which is accepting;
adding an ε-transition from the new start state to the start
state of B
adding ε-transitions from the final states of B to the new start
state.

Similar arguments as before show that L(B′) = L(B)∗
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Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.
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Summary

Recap

Deterministic Finite Automata

Non-deterministic Finite Automata

Regular languages

Regular expressions
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Regular expressions

Regular expressions are a way of describing “finite automaton”
patterns:

Second-last letter is b

Every odd symbol is b

Many applications in CS:

Lexical analysis in compiler construction

Search facilities provided by text editors and databases;
utilities such as grep and awk

Pattern matching on strings
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Regular expressions

Given a finite set Σ, a regular expression (regexp) over Σ is
defined recursively as follows:

∅ is a regular expression

ε is a regular expression

a is a regular expression for all a ∈ Σ

If E1 and E2 are regular expressions, then E1E2 is a regular
expression

If E1 and E2 are regular expressions, then E1 + E2 is a regular
expression

If E is a regular expression, then E ∗ is a regular expression

We use parentheses to disambiguate regexps, though ∗ binds
tighter than concatenation, which binds tighter than +.
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Examples

Example

The following are regular expressions over Σ = {0, 1}:
∅
101 + 010

(ε+ 10)∗01
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Language of a Regular expression

A regexp defines a language over Σ: the set of words which
“match” the expression:

Concatenation = sequences of expressions

Union = choice of expressions

Star = 0 or more occurrences of an expression

Example

The following words match (000 + 10)∗01:

01

101001

000101000001
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Language of a Regular Expression
Formally, given a regexp, E , over Σ, we define L(E ) ⊆ Σ∗

recursively as follows:

If E = ∅ then L(E ) = ∅
If E = ε then L(E ) = {λ}
If E = a where a ∈ Σ then L(E ) = {a}
If E = E1E2, then L(E ) = L(E1) · L(E2)

If E = E1 + E2, then L(E ) = L(E1) ∪ L(E2)

If E = E ∗1 then L(E ) = (L(E1))∗

Example

L(010 + 101) =?

L((ε+ 10)∗01) =?
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Language of a Regular Expression
Formally, given a regexp, E , over Σ, we define L(E ) ⊆ Σ∗

recursively as follows:

If E = ∅ then L(E ) = ∅
If E = ε then L(E ) = {λ}
If E = a where a ∈ Σ then L(E ) = {a}
If E = E1E2, then L(E ) = L(E1) · L(E2)

If E = E1 + E2, then L(E ) = L(E1) ∪ L(E2)

If E = E ∗1 then L(E ) = (L(E1))∗

Example

L(010 + 101) = {010, 101}

L((ε+ 10)∗01) =?
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Language of a Regular Expression
Formally, given a regexp, E , over Σ, we define L(E ) ⊆ Σ∗

recursively as follows:

If E = ∅ then L(E ) = ∅
If E = ε then L(E ) = {λ}
If E = a where a ∈ Σ then L(E ) = {a}
If E = E1E2, then L(E ) = L(E1) · L(E2)

If E = E1 + E2, then L(E ) = L(E1) ∪ L(E2)

If E = E ∗1 then L(E ) = (L(E1))∗

Example

L(010 + 101) = {010, 101}

L((ε+ 10)∗01) = {01, 1001, 101001, . . .}
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Regular expressions vs NfAs

Theorem (Kleene’s theorem)

For any regular expression E , L(E ) is a regular language.

For any regular language L, there is a regular expression E
such that L = L(E )
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Proof of Kleene’s theorem

Given E , L(E ) is a regular language. Proof by induction on E .

Given L, find E such that L = L(E )

Let
LXq,q′ = {w ∈ Σ∗ : q

w−→
∗
q′ with all intermediate states in X}

Define EX
q,q′ such that L(EX

q,q′) = LXq,q′ :

When q = q′: E∅q,q′ = ε+ a1 + a2 + . . .+ ak where q
ai−→ q

When q 6= q′: E∅q,q′ = ∅+ a1 + a2 + . . .+ ak where q
ai−→ q′

For X 6= ∅:

EX
q,q′ = E

X−{r}
q,q′︸ ︷︷ ︸
(1)

+EX−{r}
q,r · (EX−{r}

r ,r )∗ · EX−{r}
r ,q′︸ ︷︷ ︸

(2)

The required expression is then E =
∑

q∈F EQ
q0,q
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Proof of Kleene’s theorem

Given E , L(E ) is a regular language. Proof by induction on E .

Given L, find E such that L = L(E )

Let
LXq,q′ = {w ∈ Σ∗ : q

w−→
∗
q′ with all intermediate states in X}

Define EX
q,q′ such that L(EX

q,q′) = LXq,q′ :

When q = q′: E∅q,q′ = ε+ a1 + a2 + . . .+ ak where q
ai−→ q

When q 6= q′: E∅q,q′ = ∅+ a1 + a2 + . . .+ ak where q
ai−→ q′

For X 6= ∅:

EX
q,q′ = E

X−{r}
q,q′︸ ︷︷ ︸
(1)

+EX−{r}
q,r · (EX−{r}

r ,r )∗ · EX−{r}
r ,q′︸ ︷︷ ︸

(2)

The required expression is then E =
∑

q∈F EQ
q0,q
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