COMP2111 Week 7

Term 1, 2024
Finite automata



Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions



Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions



Transition systems

A transition system (or state machine) is a pair (S, —) where S
is a set and -C S x S is a binary relation.

NB
S is not necessarily finite.

Transition systems may have:
@ [-labelled transitions: -C S x L x S
@ A start/initial state sop € S
@ A set of final states F C S (where runs terminate)

If — is a partial function (from S x L to S), the transition system
is deterministic. If — is a function, the transition system is total.



Reachability and Runs

A state s’ is reachable from a state s if (s,s') € —* (the reflexive
and transitive closure of —).

A run from a state s is a sequence s, S, ... such that s; = s and
si — sjy1 for all i.

NB

In a non-deterministic transition system there may be many (or no)
runs from a state. In an unlabelled deterministic transition system
there is exactly one maximal run from every state.




Acceptors and Transducers

An acceptor is a transition system with:
o (input-)labelled transitions
@ a start/initial state

@ a set of final states

A transducer is a transition system with:
o (input & output-)labelled transitions

@ a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map
sequences of inputs to sequences of outputs.
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A deterministic finite automaton (DFA) is a total, finite state
acceptor.

DFAs represent “computation with finite memory”

DFAs are simple, easy to work with and show up all over the place.
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%, 6, qo, F) where

@ @ is a finite set of states

@ X is the input alphabet

@ 0: Q x X — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a deterministic finite automaton (DFA) is a tuple
(Q,%, 6, qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ X is the input alphabet

@ 0: Q x X — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a deterministic finite automaton (DFA) is a tuple
(072757 q07F) Where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}
@ X is the input alphabet: ¥ = {0,1}

@ 0: Q x X — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a deterministic finite automaton (DFA) is a tuple
(072757 q07F) Where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ X is the input alphabet: ¥ = {0,1}

@ 0: Q x X — Q is the transition function

@ qop € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}



Language of a DFA
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A DFA accepts a sequence of symbols from ¥ —i.e. elements of ©*

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.
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transition to the appropriate state determined by §
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A DFA accepts a sequence of symbols from ¥ —i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
@ Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.
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For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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L(A) ={1,01,11,101,...}

For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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L(A) = {1,01,11,101,...}
For a DFA A = (Q, %, 4, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

A language L C X* is regular if there is some DFA A such that
L=L(A)
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Given a DFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then X € L(q)
0 If g2 ¢ and w € Lu(q') then aw € L(q)



Language of a DFA: formally

Given a DFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:
e If g€ F then X € La(q)
0 If g2 ¢ and w € Lu(q') then aw € L(q)
We then define
L(A) = L.a(qo)
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L(Az) ={w € {a,b}" :

w ends with a} U {\}
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Example
Find A3 such that L(A3) = ()

a,b
Az

()
Find A4 such that L(A4) = {\}

a, b

@@

As
—>
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Find As such that L(As) = {w € {a, b}* : every odd symbol is b}
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Find Ag such that
L(Ag) = {w € {a, b}* : second-last symbol is b}
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Find Ag such that
L(Ag) = {w € {a, b}* : second-last symbol is b}
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A non-deterministic finite automaton (NFA)
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

is a non-
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,%,9, qo, F) where

@ Q is a finite set of states

@ X is the input alphabet

@ 0 C Qx (XU{e}) x Q is the transition relation
@ qo € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,%,9, qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ X is the input alphabet

@ 0 C Qx (XU{e}) x Q is the transition relation
@ qo € Q is the start state

@ F C Q is the set of final/accepting states
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,%,9, qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ ¥ is the input alphabet: ¥ = {0, 1}

@ 0 C Qx (XU{e}) x Q is the transition relation
@ qo € Q is the start state

@ F C Q is the set of final/accepting states
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(queu q2)7 (CI1,0, q2)7 (CIl,qu),
(q27 Oa CI1)

{ (q0707 q0)7 (q0717q0)7 (q0717Q1)7 }
)=
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do 0 {CIO} {qo,ch}

a | {2} {e} {a}

@| 0 {gq} 0
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Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,%,9, qo, F) where

e Q@ is a finite set of states: Q@ = {qo, 91, 92}

@ ¥ is the input alphabet: ¥ = {0, 1}

@ 0 C Qx (XU{e}) x Q is the transition relation

@ qo € Q is the start state

@ F C Q is the set of final/accepting states: F = {q1}
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An NFA accepts a sequence of symbols from ¥ — i.e. elements of ©*

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always “choose wisely”
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@ Colour the state qo
@ Colour states reachable by one or more € transitions from qq.
@ For each symbol ¢ of w:

o Colour all states reachable by a c-transition followed by 0 or
more € transitions from the coloured states, and uncolour all
other states.
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@ Colour the state qo
@ Colour states reachable by one or more € transitions from qq.
@ For each symbol ¢ of w:

o Colour all states reachable by a c-transition followed by 0 or
more € transitions from the coloured states, and uncolour all
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@ Accept if there are no symbols left and a final state is coloured;
otherwise, reject.
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@ Colour the state qo
@ Colour states reachable by one or more € transitions from qq.
@ For each symbol ¢ of w:

o Colour all states reachable by a c-transition followed by 0 or
more € transitions from the coloured states, and uncolour all
other states.

@ Accept if there are no symbols left and a final state is coloured;
otherwise, reject.
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For an NFA A = (Q, X, 6, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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L(A) = {1,10,11,101,...}

For an NFA A = (Q, X, 6, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A
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o If g€ F then XA € L4(q)
0 1f g2 ¢ and w € Lu(q') then aw € L4(q)
0 If g5 ¢ and w € La(q') then w € L4(q)



Language of an NFA: formally

Given an NFA A = (Q, X, 0, qo, F) we define L4 : Q — X*
inductively as follows:

o If g€ F then XA € L4(q)
0 1f g2 ¢ and w € Lu(q') then aw € L4(q)
0 If g5 ¢ and w € La(q') then w € L4(q)
We then define
L(A) = La(qo)
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L(B1) = {w € {a,b}" : w ends with b}




Examples

Example

a, b

(=)

L(By) =7

B>
9




Examples

Example

a, b

(=)

L(By) = {a, b}*

B>
9




Examples

Example
Find B3 such that L(B3) =0

Find By such that L(Bs) = {\}




Examples

Example
Find B3 such that L(B3) =0

B3

Find By such that L(Bs) = {\}




Examples

Example
Find B3 such that L(B3) =0

B3

Find By such that L(Bs) = {\}
By
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Find Bs such that L(Bs) = {w € {a, b}* : second-last symbol is b}
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Example
Find Bs such that L(Bs) = {w € {a, b}* : second-last symbol is b}

a,b

Bs
OO
9
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NFAs vs DFAs

Clearly for any DFA A there is an NFA B such that L(A) = L(B).

Theorem
For any NFA B there is a DFA A such that L(A) = L(B).

Proof sketch: (Subset construction)
Given B =(Q, X, 6, qo, F), construct A = (Q',X,d,qp, F') as
follows:
o Q' =Pow(Q)
0 ¥(X,a)={d€Q :3geX,qd"cQq>q Ny q}t
°ogh=1{d€cQ:q> ¢}
o FF={XeQ : XNF#0}
Intuitively: A keeps track of all the possible states B could be in
after seeing a given sequence of symbols.
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NFA to DFA Example

a,b

o' a b
[
{90}
{a1}
{3}
{CIo7 ql}
{qo7 CI2}
{Ch, Clz}
{90, 91, 92}

Bs
—
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NFA to DFA Example

a,b

6/

[
{90}
{a1}
{3}

{CIo7 ql}

{qo7 CI2}

{Ch, Clz}
{90, 91, 92}

Bs
—
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NFA to DFA Example

a,b
Bs
—

6/

a

[
{90}
{a1}
{3}

{CIo7 ql}

{qo7 CI2}

{Ch, Clz}
{90, 91, 92}

b
0 0
{CIO} {CIo, Cll}




Example

NFA to DFA Example

a,b
Bs
—

6/

a

[
{90}
{a1}
{3}

{q07Q1}

{CI07CI2}

{qlan}
{90, 91, 92}

b
[ [
{CIO} {CIo, Cll}
{a2} {a2}
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NFA to DFA Example

a,b
Bs
—

o' a b
[ [ [
{CIO} {CIO} {CIO,Ch}
{a1} {92} {92}
{3} 0 0
{CIo7 ql}
{qo7 CI2}
{Ch, Clz}

{q07 a1, q2}
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NFA to DFA Example

a,b
Bs
—

o' a b
0 0 0
{CIO} {CIO} {CIO,Ch}
{a1} {92} {92}
{3} 0 0
{CIO7Q1} {meh} {quQhQZ}
{qo7 CI2}
{Ch, Clz}

{q07 a1, q2}




Example

NFA to DFA Example

a,b
Bs
—

o' a b
0 0 0
{CIO} {CIO} {CIO,Ch}
{a1} {92} {92}
{3} 0 0
{CIO7Q1} {meh} {quQhQZ}
{qo7 CI2} {CIO} {QOa Cll}
{Ch, Clz}

{q07 a1, q2}
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NFA to DFA Example

a,b
Bs
—

o' a b
0 0 0
{CIO} {CIO} {CIO,Ch}
{a1} {92} {92}
{3} 0 0
{CIO7Q1} {meh} {quQhQZ}
{qo7 CI2} {CIO} {QOa Cll}
{Ch, Clz} {CI2} {CIQ}

{q07 a1, q2}




Example

NFA to DFA Example

a,b
Bs
—

o' a b
0 0 0
{CIO} {CIO} {CIO,Ch}
{a1} {92} {92}
{3} 0 0
{CIO7Q1} {meh} {quQhQZ}
{qo7 CI2} {CIO} {QOa Cll}
{Ch, Clz} {CI2} {CIQ}

{q07 a1, q2}

{‘707CI2} {quCIhqz}




NFA to DFA Example

Example
a,b
Bs
OO
—

o' a b

0 Al A A

() B|B E

{} C|D D

() D|lA A

{q0,q1} E|F H

{9,92} F|B E

{q1,92} G|D D

{90,q1,2} H|F H




NFA to DFA Example

Example
a,b
Bs
OO
—

o' a b

0 Al A A

{qo} B|B E

{} C|D D

(e} D|A A

{q0,q1} E|F H

{9,92} F|B E

{q1,92} G|D D

{90,q1,2} H|F H
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NFA to DFA Example

Example
a,b
Bs
(=)
—_—

& a b

0 Al A A

{@} B|B E

{a} C|D D

{3} DlA A

{quql} E F H

{q0,2} F | B E

{g1.2} G| D D

{90,q1.2} H|F H
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NFA to DFA Example

Example

a,b

Bs
(=)

a

2o

297
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NFAs vs DFAs

Theorem

@ For any NFA with n states there exists a DFA with at most 2"
states that accepts the same language

@ There exist NFAs with n states such that the smallest DFA
that accepts the same language has at least 2" states.
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Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions
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Regular languages

A language L C ¥* is regular if there is some DFA A such that
L=L(A)
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Regular languages

A language L C ¥* is regular if there is some DFA A such that
L=L(A)

Equivalently, there is some NFA B such that L = L(B)
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Non-regular languages

Are there languages which are not regular?
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs
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Non-regular languages

Are there languages which are not regular? Yes

“Simple” counting argument: there are uncountably many
languages, and only countably many DFAs

An example of a non-regular language: {0"1" : n € N}
Intuitively: need arbitrary large memory to “remember” the
number of Q's
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Complementation

Theorem
If L is a regular language then L = ¥*\ L is a regular language. J

Proof:
o Let A=(Q,%,0,qo, F) be a DFA such that L(A) =L
e Consider A’ = (Q,%,0,q0,Q \ F)
@ For any word w € ¥*, the corresponding run in A is unique,
So:

o If we L(A) then w ¢ L(A'), and
o If w¢ L(A) then w € L(A),

@ Therefore L(A) =X*\ L(A) = L€

NB
This argument does not apply for NFAs (see By and B;) J
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Union

Theorem
If Ly and Ly are regular languages, then Ly U Ly is regular.

Proof:
@ Let By and B, be NFAs such that L(B1) = Ly and L(B2) = L,

@ Construct an NFA B by having a new start state with
e-transitions to the start states of B; and B>
@ Consider w € L1 U Ly:

o If w € L; then there is a run in By, and hence in B, which
ends in a final state

o If w € L, then there is a run in B5, and hence in 3, which
ends in a final state

o In either case w € L(B)

@ Conversely, any accepting run in B will be either an accepting
run in By or in By; so if w € L(B) then w € L1 U Ly
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Intersection

Theorem
If Ly and Ly are regular languages, then L1 N Ly is regular.

Proof:
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Intersection

Theorem
If Ly and Ly are regular languages, then L1 N Ly is regular.

Proof:
LiNnly, = (Li U Lg)c
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Concatenation
Recall for languages X and Y: X - Y ={xy : x€ X,y € Y}

Theorem
If Ly and Ly are regular languages, then Ly - Ly is regular.

Proof:

@ Let By and B be NFAs such that L(B1) = Ly and L(B2) = L,

@ Construct an NFA B by adding e-transitions from the final
states of 31 to the start state of 35. Let the start state of B
be the start state of Bi; and let the final states of 13 be the
final states of B».

@ Any word in Ly - Ly can be written as wv with w € L; and
v € Ly. w has an accepting run in By and v has an accepting
run in By, so wv has an accepting run in 5.

@ Conversely, any word w with an accepting run in B can be
broken up into an accepting run in B; followed by an
accepting run in By. Thus w can be broken up into two words
w = xy where x € L and y € L.



Kleene star

Recall for a language X:
X* ={w : wis the concatenation of 0 or more words in X}

Theorem
If L is regular languages, then L* is regular.

Proof:

@ Let B be an NFA such that L(B) =L
@ Construct an NFA B’ by:

o creating a new start state which is accepting;

e adding an e-transition from the new start state to the start
state of B

e adding e-transitions from the final states of B to the new start
state.

@ Similar arguments as before show that L(B’) = L(B)*

114
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Regular operations

Concatenation, union, and Kleene star are collectively known as
the regular operations.
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Summary

Recap

Deterministic Finite Automata
Non-deterministic Finite Automata
Regular languages

Regular expressions
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Regular expressions

Regular expressions are a way of describing “finite automaton”
patterns:

@ Second-last letter is b

@ Every odd symbol is b

Many applications in CS:
@ Lexical analysis in compiler construction

@ Search facilities provided by text editors and databases;
utilities such as grep and awk

@ Pattern matching on strings
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Regular expressions

Given a finite set ¥, a regular expression (regexp) over ¥ is
defined recursively as follows:

@ () is a regular expression

@ ¢ is a regular expression

@ ais a regular expression for all a € &
°

If E1 and E; are regular expressions, then E1E; is a regular
expression

If E; and E; are regular expressions, then E; + E, is a regular
expression

o If E is a regular expression, then E* is a regular expression

We use parentheses to disambiguate regexps, though * binds
tighter than concatenation, which binds tighter than +.
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Examples

Example

The following are regular expressions over ¥ = {0, 1}:
°(
e 101 + 010
e (e+10)*01
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Language of a Regular expression

A regexp defines a language over ¥: the set of words which
“match” the expression:

@ Concatenation = sequences of expressions
@ Union = choice of expressions

@ Star = 0 or more occurrences of an expression

Example

The following words match (000 + 10)*01:
e 01
e 101001
e 000101000001
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Language of a Regular Expression

Formally, given a regexp, E, over ¥, we define L(E) C ©*
recursively as follows:

o If E=0(then L(E)=10

If E = ¢ then L(E) = {\}

o If E = awhere a € X then L(E) = {a}

o If E = E1B, then L(E) = L(E,) - L(E)

o If E = E; + E, then L(E) = L(£1) U L(E»)
o If E = Ef then L(E) = (L(E1))*

Example

L(010 + 101) =?

L((e + 10)*01) =7
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Language of a Regular Expression

Formally, given a regexp, E, over ¥, we define L(E) C ©*
recursively as follows:

o If E=0(then L(E)=10

If E = ¢ then L(E) = {\}

o If E = awhere a € X then L(E) = {a}

o If E = E1B, then L(E) = L(E,) - L(E)

o If E = E; + E, then L(E) = L(£1) U L(E»)
o If E = Ef then L(E) = (L(E1))*

Example

L(010 4 101) = {010,101}

L((e + 10)*01) =7
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Language of a Regular Expression

Formally, given a regexp, E, over ¥, we define L(E) C ©*
recursively as follows:

o If E=0(then L(E)=10

If E = ¢ then L(E) = {\}

o If E = awhere a € X then L(E) = {a}

o If E = E1B, then L(E) = L(E,) - L(E)

o If E = E; + E, then L(E) = L(£1) U L(E»)
o If E = Ef then L(E) = (L(E1))*

Example

L(010 + 101) = {010,101}

L((e + 10)*01) = {01,1001,101001,...}
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Regular expressions vs NfAs

Theorem (Kleene's theorem)
@ For any regular expression E, L(E) is a regular language.

@ fFor any regular language L, there is a regular expression E
such that L = L(E)
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Proof of Kleene’s theorem

Given E, L(E) is a regular language. Proof by induction on E.
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Proof of Kleene’s theorem

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)
o Let .
Lil(q, ={weX*: g% ¢ with all intermediate states in X}
- X X y_ (X .
o Define E_ , such that L(E7 /) = L7 .:
o When g =¢": Eg),q, —¢4a+a+...+ax where g 25 g

o When q # q": Eg,q/:@+al+ag+...—|—akwhereqi>q’
o For X # 0

.q

X—{r —{r —{ri\x X—{r
E;fq,:quq/{}+E;fr{}.(E’i<r{}) E A
——

1) (2

@ The required expression is then E = quF E(%q



