COMP2111 Week 7 Term 1, 2024 Finite automata

1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

イロト イヨト イヨト 一日

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

Summary

イロト イヨト イヨト 一日

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

Transition systems

A transition system (or state machine) is a pair (S, \rightarrow) where S is a set and $\rightarrow \subseteq S \times S$ is a binary relation.

NB

S is not necessarily finite.

Transition systems may have:

- *L*-labelled transitions: $\rightarrow \subseteq S \times L \times S$
- A start/initial state $s_0 \in S$
- A set of final states $F \subseteq S$ (where runs terminate)

If \rightarrow is a partial function (from $S \times L$ to S), the transition system is **deterministic**. If \rightarrow is a function, the transition system is **total**.

Reachability and Runs

A state s' is **reachable** from a state s if $(s, s') \in \rightarrow^*$ (the reflexive and transitive closure of \rightarrow).

A **run** from a state *s* is a sequence s_1, s_2, \ldots such that $s_1 = s$ and $s_i \rightarrow s_{i+1}$ for all *i*.

NB

In a non-deterministic transition system there may be many (or no) runs from a state. In an unlabelled deterministic transition system there is exactly one maximal run from every state.

Acceptors and Transducers

An acceptor is a transition system with:

- (input-)labelled transitions
- a start/initial state
- a set of final states
- A transducer is a transition system with:
 - (input & output-)labelled transitions
 - a start/initial state

NB

Acceptors accept/reject sequences of inputs. Transducers map sequences of inputs to sequences of outputs.

Summary

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

イロト イヨト イヨト 一日

A deterministic finite automaton (DFA) is a total, finite state acceptor.

DFAs represent "computation with finite memory"

DFAs are simple, easy to work with and show up all over the place.

- Q is a finite set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

 $egin{aligned} \delta(q_0,0) &= q_0 \ \delta(q_0,1) &= q_1 \ \delta(q_1,0) &= q_2 \ \delta(q_1,1) &= q_1 \ \delta(q_2,0) &= q_1 \ \delta(q_2,1) &= q_1 \end{aligned}$

δ	0	1
q 0	q 0	q_1
q_1	q 2	q_1
q_2	q_1	q_1

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma = \{0, 1\}$
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

• Start in state q₀

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q₀
- Take the first symbol of w

・ロト ・回ト ・ヨト

 $\exists \rightarrow$

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

<ロ> <四> <四> <三> <三</td>

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

・ロト ・回ト ・ヨト ・ヨト … ヨ

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA \mathcal{A} such that $L = L(\mathcal{A})$

イロト イヨト イヨト 一日

Language of a DFA: formally

Given a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_{\mathcal{A}} : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \stackrel{a}{\rightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $aw \in L_{\mathcal{A}}(q)$

Language of a DFA: formally

Given a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_{\mathcal{A}} : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \stackrel{a}{\rightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $aw \in L_{\mathcal{A}}(q)$

We then define

 $L(\mathcal{A}) = L_{\mathcal{A}}(q_0)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Examples

Examples

Example

Find \mathcal{A}_3 such that $L(\mathcal{A}_3) = \emptyset$

Find \mathcal{A}_4 such that $L(\mathcal{A}_4) = \{\lambda\}$

Example

Find \mathcal{A}_3 such that $L(\mathcal{A}_3) = \emptyset$

Find \mathcal{A}_4 such that $L(\mathcal{A}_4) = \{\lambda\}$

Example

Find \mathcal{A}_3 such that $L(\mathcal{A}_3) = \emptyset$

Find A_4 such that $L(A_4) = \{\lambda\}$

Example

Find \mathcal{A}_5 such that $L(\mathcal{A}_5) = \{w \in \{a, b\}^* : \text{ every odd symbol is } b\}$

Example

Find \mathcal{A}_5 such that $L(\mathcal{A}_5) = \{w \in \{a, b\}^* : \text{ every odd symbol is } b\}$

Example

Find \mathcal{A}_6 such that $L(\mathcal{A}_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$

Example

Find \mathcal{A}_6 such that $L(\mathcal{A}_6) = \{ w \in \{a, b\}^* : \text{second-last symbol is } b \}$

Example

Find \mathcal{A}_6 such that $L(\mathcal{A}_6) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$ а \mathcal{A}_5 b xВ XX а а b BΒ) b а

Summary

イロト イヨト イヨト 一日

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

47

A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

- Q is a finite set of states
- Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

$$\delta = \left\{ \begin{array}{ccc} (q_0, 0, q_0), & (q_0, 1, q_0), & (q_0, 1, q_1), \\ (q_1, \epsilon, q_2), & (q_1, 0, q_2), & (q_1, 1, q_1), \\ & (q_2, 0, q_1) \end{array} \right\}$$

δ	ϵ	0	1
q_0	Ø	$\{q_0\}$	$\{q_0, q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$	$\{q_1\}$
q 2	Ø	$\{q_1\}$	Ø

- Q is a finite set of states: $Q = \{q_0, q_1, q_2\}$
- Σ is the input alphabet: $\Sigma=\{0,1\}$
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states: $F = \{q_1\}$

An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if **at least one run** ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always "choose wisely"

w: 1000

• Colour the state q_0

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

- Colour the state q_0
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

w: 1000

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

• Accept if there are no symbols left and a final state is coloured; otherwise, reject.

w: 1000 ✓

- Colour the state q₀
- Colour states reachable by one or more ϵ transitions from q_0 .
- For each symbol *c* of *w*:
 - Colour all states reachable by a *c*-transition followed by 0 or more ϵ transitions from the coloured states, and uncolour all other states.

• Accept if there are no symbols left and a final state is coloured; otherwise, reject.

For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

ヘロン 人間 とくほど くほどう
Language of an NFA

For an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $L(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

イロン 不同 とくほど 不良 とうほ

Language of an NFA: formally

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Given an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_{\mathcal{A}} : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \stackrel{a}{\rightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $aw \in L_{\mathcal{A}}(q)$
- If $q \stackrel{\epsilon}{
 ightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $w \in L_{\mathcal{A}}(q)$

74

Language of an NFA: formally

Given an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ we define $L_{\mathcal{A}} : Q \to \Sigma^*$ inductively as follows:

- If $q \in F$ then $\lambda \in L_{\mathcal{A}}(q)$
- If $q \stackrel{a}{\rightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $aw \in L_{\mathcal{A}}(q)$
- If $q \stackrel{\epsilon}{
 ightarrow} q'$ and $w \in L_{\mathcal{A}}(q')$ then $w \in L_{\mathcal{A}}(q)$

We then define

 $L(\mathcal{A}) = L_{\mathcal{A}}(q_0)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

 \mathcal{B}_3

Example

Find \mathcal{B}_3 such that $L(\mathcal{B}_3) = \emptyset$

Find \mathcal{B}_4 such that $L(\mathcal{B}_4) = \{\lambda\}$

 \mathcal{B}_4

Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$

Example

Find \mathcal{B}_5 such that $L(\mathcal{B}_5) = \{w \in \{a, b\}^* : \text{second-last symbol is } b\}$

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Clearly for any DFA \mathcal{A} there is an NFA \mathcal{B} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For any NFA \mathcal{B} there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof sketch: (Subset construction) Given $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$, construct $\mathcal{A} = (Q', \Sigma, \delta', q'_0, F')$ as follows:

- *Q*′ = Pow(*Q*)
- $\delta'(X, a) = \{q' \in Q : \exists q \in X, q'' \in Q.q \xrightarrow{a} q'' \xrightarrow{\epsilon}^* q'\}$
- $q_0' = \{q' \in Q : q_0 \stackrel{\epsilon}{\rightarrow}^* q'\}$
- $F' = \{X \in Q' : X \cap F \neq \emptyset\}$

Intuitively: A keeps track of all the possible states B could be in after seeing a given sequence of symbols.

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0, q_1\}$
$\{q_1\}$		
$\{q_2\}$		
$\{q_0, q_1\}$		
$\{q_0, q_2\}$		
$\{q_1, q_2\}$		
$\{q_0, q_1, q_2\}$		

δ'	а	Ь
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0, q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$		
$\{q_0,q_1\}$		
$\{q_0, q_2\}$		
$\{q_1, q_2\}$		
$\{q_0, q_1, q_2\}$		

δ'	а	b
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0, q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0, q_2\}$	$\{q_0\}$	$\{ q_0, q_1 \}$
$\{q_1, q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_1, q_2\}$

δ'		а	b
Ø	Α	A	Α
$\{q_0\}$	В	В	Ε
$\{q_1\}$	С	D	D
$\{q_2\}$	D	Α	Α
$\{q_0, q_1\}$	Ε	F	Н
$\{q_0, q_2\}$	F	В	Ε
$\{q_1, q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

δ'		а	b
Ø	Α	A	Α
$\{q_0\}$	В	В	Ε
$\{q_1\}$	С	D	D
$\{q_2\}$	D	Α	Α
$\{q_0, q_1\}$	Ε	F	Н
$\{q_0, q_2\}$	F	В	Ε
$\{q_1, q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

δ'		а	b
Ø	Α	A	Α
$\{q_0\}$	В	В	Ε
$\{q_1\}$	С	D	D
$\{q_2\}$	D	Α	Α
$\{q_0, q_1\}$	Ε	F	Н
$\{q_0, q_2\}$	F	В	Ε
$\{q_1, q_2\}$	G	D	D
$\{q_0, q_1, q_2\}$	Н	F	Н

Theorem

- For any NFA with n states there exists a DFA with at most 2ⁿ states that accepts the same language
- There exist NFAs with n states such that the smallest DFA that accepts the same language has at least 2ⁿ states.

Summary

イロト イヨト イヨト 一日

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

Regular languages

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA \mathcal{A} such that $L = L(\mathcal{A})$

Regular languages

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA \mathcal{A} such that $L = L(\mathcal{A})$

Equivalently, there is some NFA \mathcal{B} such that $L = L(\mathcal{B})$

Non-regular languages

Are there languages which are not regular?

Non-regular languages

Are there languages which are not regular? Yes

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

Non-regular languages

Are there languages which are not regular? Yes

"Simple" counting argument: there are uncountably many languages, and only countably many DFAs

An example of a non-regular language: $\{0^n1^n : n \in \mathbb{N}\}$ Intuitively: need arbitrary large memory to "remember" the number of 0's
Complementation

Theorem

If L is a regular language then $L^c = \Sigma^* \setminus L$ is a regular language.

Proof:

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(\mathcal{A}) = L$
- Consider $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \setminus F)$
- For any word w ∈ Σ*, the corresponding run in A is unique, so:
 - If $w \in L(\mathcal{A})$ then $w \notin L(\mathcal{A}')$, and
 - If $w \notin L(\mathcal{A})$ then $w \in L(\mathcal{A}')$,
- Therefore $L(\mathcal{A}') = \Sigma^* \setminus L(\mathcal{A}) = L^c$

NB

This argument does not apply for NFAs (see \mathcal{B}_1 and \mathcal{B}_2)

Union

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is regular.

Proof:

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by having a new start state with ϵ -transitions to the start states of \mathcal{B}_1 and \mathcal{B}_2
- Consider $w \in L_1 \cup L_2$:
 - If $w \in L_1$ then there is a run in \mathcal{B}_1 , and hence in \mathcal{B} , which ends in a final state
 - If $w \in L_2$ then there is a run in \mathcal{B}_2 , and hence in \mathcal{B} , which ends in a final state
 - In either case $w \in L(\mathcal{B})$
- Conversely, any accepting run in B will be either an accepting run in B₁ or in B₂; so if w ∈ L(B) then w ∈ L₁ ∪ L₂

・ロト ・回ト ・ヨト ・ヨト ・ヨー

Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:

・ロト ・日下・・日下・・日下・ シック・

Intersection

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.

Proof:

$$L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$$

Concatenation

Recall for languages X and Y: $X \cdot Y = \{xy : x \in X, y \in Y\}$

Theorem

If L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is regular.

Proof:

- Let \mathcal{B}_1 and \mathcal{B}_2 be NFAs such that $L(\mathcal{B}_1) = L_1$ and $L(\mathcal{B}_2) = L_2$
- Construct an NFA \mathcal{B} by adding ϵ -transitions from the final states of \mathcal{B}_1 to the start state of \mathcal{B}_2 . Let the start state of \mathcal{B} be the start state of \mathcal{B}_1 ; and let the final states of \mathcal{B} be the final states of \mathcal{B}_2 .
- Any word in L₁ · L₂ can be written as wv with w ∈ L₁ and v ∈ L₂. w has an accepting run in B₁ and v has an accepting run in B₂, so wv has an accepting run in B.
- Conversely, any word w with an accepting run in B can be broken up into an accepting run in B₁ followed by an accepting run in B₂. Thus w can be broken up into two words w = xy where x ∈ L₁ and y ∈ L₂.

Kleene star

Recall for a language X: $X^* = \{w : w \text{ is the concatenation of 0 or more words in } X\}$

Theorem

If L is regular languages, then L^* is regular.

Proof:

- Let \mathcal{B} be an NFA such that $L(\mathcal{B}) = L$
- Construct an NFA \mathcal{B}' by:
 - creating a new start state which is accepting;
 - adding an $\epsilon\text{-transition}$ from the new start state to the start state of $\mathcal B$
 - adding $\epsilon\text{-transitions}$ from the final states of $\mathcal B$ to the new start state.
- Similar arguments as before show that $L(\mathcal{B}') = L(\mathcal{B})^*$

Regular operations

Concatenation, union, and Kleene star are collectively known as the **regular operations**.

Summary

イロト イヨト イヨト 一日

- Recap
- Deterministic Finite Automata
- Non-deterministic Finite Automata
- Regular languages
- Regular expressions

Regular expressions

Regular expressions are a way of describing "finite automaton" patterns:

- Second-last letter is b
- Every odd symbol is *b*

Many applications in CS:

- Lexical analysis in compiler construction
- Search facilities provided by text editors and databases; utilities such as grep and awk

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• Pattern matching on strings

Regular expressions

Given a finite set Σ , a **regular expression (regexp) over** Σ is defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- *a* is a regular expression for all $a \in \Sigma$
- If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
- If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression
- If E is a regular expression, then E^* is a regular expression We use parentheses to disambiguate regexps, though * binds tighter than concatenation, which binds tighter than +.

Examples

Example The following are regular expressions over $\Sigma = \{0, 1\}$: • \emptyset • 101 + 010• $(\epsilon + 10)^*01$

Language of a Regular expression

A regexp defines a language over Σ : the set of words which "match" the expression:

- Concatenation = sequences of expressions
- Union = choice of expressions
- Star = 0 or more occurrences of an expression

Example

The following words match $(000 + 10)^*01$:

- 01
- 101001
- 000101000001

Language of a Regular Expression

Formally, given a regexp, E, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

L(010 + 101) = ?

 $L((\epsilon + 10)^*01) = ?$

Language of a Regular Expression

Formally, given a regexp, E, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

$$L(010+101) = \{010, 101\}$$

 $L((\epsilon + 10)^*01) = ?$

Language of a Regular Expression

Formally, given a regexp, E, over Σ , we define $L(E) \subseteq \Sigma^*$ recursively as follows:

- If $E = \emptyset$ then $L(E) = \emptyset$
- If $E = \epsilon$ then $L(E) = \{\lambda\}$
- If E = a where $a \in \Sigma$ then $L(E) = \{a\}$
- If $E = E_1 E_2$, then $L(E) = L(E_1) \cdot L(E_2)$
- If $E = E_1 + E_2$, then $L(E) = L(E_1) \cup L(E_2)$
- If $E = E_1^*$ then $L(E) = (L(E_1))^*$

Example

```
L(010+101) = \{010, 101\}
```

 $L((\epsilon + 10)^*01) = \{01, 1001, 101001, \ldots\}$

Regular expressions vs NfAs

Theorem (Kleene's theorem)

- For any regular expression E, L(E) is a regular language.
- For any regular language L, there is a regular expression E such that L = L(E)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Proof of Kleene's theorem

Given E, L(E) is a regular language. Proof by induction on E.

Proof of Kleene's theorem

Given E, L(E) is a regular language. Proof by induction on E.

Given L, find E such that L = L(E)

• Let $L_{q,q'}^X = \{ w \in \Sigma^* : q \xrightarrow{w}^* q' \text{ with all intermediate states in } X \}$ • Define $E_{q,q'}^X$ such that $L(E_{q,q'}^X) = L_{q,q'}^X$: • When q = q': $E_{q,q'}^{\emptyset} = \epsilon + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q$ • When $q \neq q'$: $E_{q,q'}^{\emptyset} = \emptyset + a_1 + a_2 + \ldots + a_k$ where $q \xrightarrow{a_i} q'$ • For $X \neq \emptyset$: $E_{q,q'}^X = \underbrace{E_{q,q'}^{X-\{r\}}}_{(1)} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^* \cdot E_{r,q'}^{X-\{r\}}}_{(2)}$

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

• The required expression is then $E = \sum_{q \in F} E_{q_0,q}^Q$